
Tetrahedron Letters 49 (2008) 5850–5854
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate / tet let
A one pot synthesis of annulated carbazole analogs

Arasambattu K. Mohanakrishnan *, Vasudevan Dhayalan, J. Arul Clement,
Ramalingam Balamurugan Radhakrishnan Sureshbabu, Natarajan Senthil Kumar
Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 7 June 2008
Revised 4 July 2008
Accepted 7 July 2008
Available online 9 July 2008

Keywords:
Arenes
Arylation
1,5-Sigmatropic rearrangement
Electrocyclization
Carbazoles
0040-4039/$ - see front matter � 2008 Published by
doi:10.1016/j.tetlet.2008.07.036

* Corresponding author. Tel.: +91 44 22202813; fax
E-mail address: mohan_67@hotmail.com (A. K. Mo
A ZnBr2-mediated arylation of N-protected 2/3-bromomethylindoles containing an electron-deficient
malonylidene unit with arenes at 80 �C led to the formation of arylated products, which on unprece-
dented 1,5-sigmatropic rearrangement followed by electrocyclization and subsequent aromatization
with loss of diethylmalonate furnished the corresponding annulated carbazoles in reasonable yields.
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The discovery of technologically promising electronic and opti-
cal properties in fused aromatic compounds necessitates the devel-
opment of new synthetic routes to such systems.1 Recently, a
plethora of aromatic and heteroaromatic annulation reactions
has been reported.2 Ever since the first isolation of a carbazole
alkaloid,3 organic chemists have been interested in the synthesis
of carbazole and its derivatives, due to their promising biological
activities. Recently, Knölker and Reddy extensively reviewed the
synthesis of biologically active carbazole alkaloids.4 Carbazole
and its annulated derivatives due to their unique optical, electrical,
and chemical properties are often used as functional building
blocks in the construction of organic materials for optoelectronic
devices.5–7 Very recently, several benzo and naphthocarbazole ana-
logs have been explored as potential anticancer agents.8

Even though, a variety of arylation protocols are known for benz-
ylic bromides,9–12 they are yet to be adopted for the arylation of
N-protected bromomethylindoles.13 In continuation of our interest
on synthetic elaboration of N-protected bromomethylindoles,14 we
wanted to prepare N-protected-2-benzylindole 2 from the bromo
compound 1. However, the direct phenylation of bromo compound
115 in the presence of ZnBr2 in dry benzene at reflux was found to
be troublesome. Careful column chromatographic separation of the
reaction mixture led to the isolation of benzo[b]carbazole 3a (25%)
and lactone 4 (5%), in addition to the expected 2-benzylindole 2
(20%). The formation of benzo[b]carbazole 3a might only occur
from the benzylindole 2. Hence, the N-phenylsulfonyl-2-benzyl-
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indole 2 was refluxed in xylenes for 1 h. Removal of the solvent,
followed by column chromatographic purification led to the isola-
tion of carbazole 3a (60%) and diethyl malonate. It is apparent that
compound 2 underwent, a thermally facile 1,5-hydrogen shift to
form intermediate 5, which on electrocyclization followed by sub-
sequent elimination of diethyl malonate16 afforded carbazole 3a
(Scheme 1). The formation of seven-membered lactone 4 might
be realized through loss of ethyl bromide from bromo compound
1, which was confirmed via the formation of 4 (40%) upon refluxing
SO2Ph
5

Scheme 1. Phenylation of bromo compound 1.
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Scheme 2. Annulation of bromo compound 1 with arenas.

Table 1
Annulation of bromo compound 1 with arenes/heteroarenesa

Entry ArH Time
(h)

Product24 Yieldb (%) mp

1
R1

24
N

SO2Ph
3a R1 = H, R2 = H
3b R1 = Me, R2 = H
3b' R1 = H, R2 = Me
3c R1 = OMe, R2 = H

R1

R2
25c�e (158 �C)

1 50f (180–
184 �C)

1 62 (200 �C)

2 5 N

SO2Ph
3d

40d (212 �C)

3

OMe

OMe
2 N

SO2Ph
3e

OMe

OMe

57 (210 �C)

4

Me

Me

1
N

SO2Ph
3f

Me

Me
55 (208 �C)

5

R1

R2

1, 2,
4

N

SO2Ph
R2

R1

3g R1, R2 = Me
3h R1, R2 = OMe

50, 54,g 47h

(182 �C)
2 52 (170 �C)

6
S

1 N

SO2Ph
3i

S

0

7
S S n

1.5 N
SO2Ph

S
S

3j n = 1
3k n = 2

n

48 (188 �C)
2 40 (244 �C)

a Reaction conditions: bromo compound 1 (0.57 mmol), Ar1H (0.68 mmol), ZnBr2

(1.15 mmol), 1,2-DCE (10 mL), 80 �C.
b Isolated yield after column chromatography.
c Benzene was used as solvent.
d Lactone 4 (5–10% yield) was also isolated.
e The corresponding arylated product was also isolated.
f Product 3b was obtained as an inseparable 1:1 mixture of 3b + 3b0 (based on 1H

NMR integration) of isomeric carbazoles.
g Yield obtained using 20 mol % InCl3.
h Yield obtained using 2 equiv of anhydrous FeCl3.
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1 with 2 equiv of anhydrous ZnBr2 in dry 1,2-DCE. A survey of the
literature revealed that thermolysis of ethyl 2,4-diacetoxy-6-
bromomethylbenzoate under vacuum led to the formation of 5,7-
diacetoxyphthalide in excellent yield.17

Hibino and co-workers utilized base-mediated thermal electro-
cyclization of in situ generated N-protected-2,3-divinylindole at a
moderate temperature for the synthesis of carbazole alkaloids.18

Nevertheless, thermal electrocyclization of the in situ generated
2,3-divinylindole was observed only at very high temperature
(460–500 �C).19 Since, under thermal conditions, the electrocycli-
zation has to occur with N-free-2,3-divinylindole, an elevated tem-
perature was essential. Only when the nitrogen lone pair was
tightly held by an electron withdrawing phenylsulfonyl unit, can
the indole-2,3-divinyl system act as a typical triene, which in turn
promotes smooth electrocyclization at a moderate temperature.20

Being surprised by this annulation sequence promoted by a
facile 1,5-sigmatropic hydrogen shift, we tested this protocol with
Figure 1. ORTEP diagram of carbazole 3c.

Figure 2. ORTEP diagram of carbazole 3f.
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Table 2
Annulation of bromo compounds 6 and 7 with arenes/heteroarenesa

Substrate ArH Time
(h)

Product24 Yieldb (%) mp

6 10 3a 25c�e (158 �C)

6 4
N

SO2Ph
3l

43d (186 �C)

6
OMe

1 N

SO2Ph
3m

OMe
45e (214 �C)

6

OMe

OMe
2 3e 58e (210 �C)

6

Me

Me

1
N

SO2Ph
3n

Me

Me

54 (228 �C)

6

R1

R2

1 3g R1, R2 = Me 58e (182 �C)
2 3h R1, R2 = OMe 56 (170 �C)

6
S S

2
N

SO2Ph

S
S

3o

47 (228 �C)

7 3
S

3p

46 (220 �C)

7

R1

R3

R2

2
S

3q R1 = H, R2, R3 = Me
3r R1, R3 = Me, R2 = H

R2

R3

R

61 (148 �C)
2 57 (150 �C)

7
S S

2

S
3s

S

S
49 (208 �C)

a Reaction conditions: bromo compound (0.57 mmol), Ar1H (0.68;mmol), ZnBr2

(1.15 mmol), 1,2-DCE (10 mL), 80 �C.
b Isolated yield after column chromatography.
c Benzene was used as solvent.
d Lactone 4 (5–10% yield) was also isolated.
e Corresponding arylated product was also isolated.
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Scheme 4. Annulation of bromo compounds 1 and 6 with benzo[b]thiophene.
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Scheme 5. Annulation of bromo compound 6 with benzo[c]thiophene 8.
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various arenes/heteroarenes. To our delight, bromo compound 1 on
heating with arenes in the presence of 2 equiv of ZnBr2 led to the
isolation of a variety of carbazole derivatives 3a–k, (Scheme 2).

Details such as the nature of the arenes/heteroarenes, condi-
tions employed, and the annulation products obtained along with
their yields are summarized in Table 1. Annulation product 3a
was obtained in only 25% yield on reaction with benzene, an unac-
tivated aryl system (Table 1, entry 1). Annulations could be carried
out with different types of aryl/heteroaryl systems to afford the
respective products 3a–k in 25–62% yields. The annulation of 1
with toluene led to an inseparable 1:1 (based on 1H NMR inte-
gration value) isomeric mixture of carbazoles 3b and 3b0 (Table
1, entry 1). However, the annulation was found to be selective with
anisole affording carbazole 3c (Table 1, entry 1).

The annulation of 1 with naphthalene furnished the corre-
sponding naphtho[b]carbazole 3d, which represents an iso-steric
pentacyclic framework of calothrixins.21 In the case of unactivated
aryl systems such as benzene and naphthalene, the seven-mem-
bered lactone 4 was always isolated in minor amounts. As ex-
pected, the annulation yield was found to be better with
activated arenes (entries 1, 3–5). A maximum annulation yield of
62% was observed for anisole. In the case of o/p-xylene, in addition
to ZnBr2, the annulation was also studied using 20 mol % InCl3 as
well as 2 equiv of anhydrous FeCl3. Under these conditions, the
yield of the annulation product 3g was only slightly enhanced with
20 mol % of expensive InCl3. Reduced yields were obtained with
2 equiv of anhydrous FeCl3 (entry 5). Attempted annulation of bro-
mo compound 1 with benzo[b]thiophene led to a complex mixture
(entry 6). However, the annulation of 1 was carried out success-
fully with other heterocycles. Annulation of 1 with bi-thiophene/
ter-thiophene led to the isolation of products 3j and 3k in 48%
and 40% yields, respectively (entry 7). The structure of carbazoles
3c and 3f was confirmed by X-ray analysis22 (Figs. 1 and 2).

The scope and limitations of the annulation reaction were fur-
ther explored with bromo compounds 6 and 723 (Scheme 3).

Similar to the case of bromo compound 1, annulation of iso-
meric 3-bromomethylindole 6 could be performed with unacti-
vated mono- and di-substituted arenes to afford the respective
products 3a–o (Table 2). The ZnBr2-mediated arylation of bromo
compound 6 with naphthalene in 1,2-DCE at 80 �C for 10 h fur-
nished the isomeric naphtho[b]carbazole 3l in 43% yield. Compared
to the bromo compound 1, annulation of 6 with anisole furnished
isomeric carbazole 3g in low yield (45%). However, the annulation
of 6 could be achieved in relatively better yields with p-xylene/1,4-
dimethoxybenzene to afford the respective carbazoles 3g/3h. The
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annulation of 6 with bi-thiophene afforded expected product 3o in
47% yield. The structures and yields of the annulated products 3p–s
obtained using benzo[thienyl]-2-bromomethylindole 7 are also
presented in Table 2. As expected, the annulation of bromo com-
pound 7 proceeded smoothly with arenes as well as heteroarenes
using ZnBr2 in 1,2-DCE at reflux to afford products 3p–s in 46–
61% yields (Table 2).

Even though annulation of bromo compound 1 was unsuccess-
ful with benzo[b]thiophene in 1,2-DCE at reflux (Table 1, entry 6),
the same could be performed in a stepwise manner. The heteroaryl-
ation of 2-bromomethylindole 1 with benzo[b]thiophene at room
temperature followed by subsequent thermolysis at 80 �C for 1 h
led to an inseparable mixture of annulated products 3i and 3i0

(1:0.4 based on 1H NMR integration) in 65% yield (Scheme 4).
Annulation of 3-bromomethylindole 6 with benzo[b]thiophene un-
der identical conditions also produced 3i and 3i0 (0.4:1 based on 1H
NMR integration) in a slightly enhanced 70% yield (Scheme 4).

Heteroarylation of bromo compound 6 with 1-(4-methoxy-
phenyl)-3-(thiophen-2-yl)benzo[c]thiophene 825 followed by ther-
molysis at 80 �C for 1 h led to the isolation of annulation product
926 in 60% yield (Scheme 5).

Finally, the bis-annulation of bromo compound 1027 was per-
formed with p-xylene/bi-thiophene using 4 equiv of ZnBr2 to afford
heterocycles 11 and 1228 in 58 and 54% yields, respectively
(Scheme 6).

In summary, we have developed a one pot annulation protocol
for indolyl-2/3-methylbromides and benzo[thienyl]-2-bromo-
methylindole containing an electron-deficient malonylidene unit
at the adjacent position. The observed annulation was triggered
by a simple ZnBr2-mediated arylation at 80 �C. The resulting arylat-
ed products, at the same temperature, led to the formation of an in
situ generated triene, which on electrocyclization followed by sub-
sequent aromatization with loss of diethyl malonate afforded the
respective annulated products in reasonable yields. The annulation
methodology developed herein can be utilized with a wide variety
of aryl and heteroaryl systems under mild conditions.
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